



## Lunar Flashlight Overview A Technology Demonstration Mission with a Strong Science Focus



### Objectives:

- Perform a lunar orbit insertion using a green monopropellant micropropulsion subsystem.
- Demonstrate an active laser illumination technique for making reflectance measurements.
- Measure the surface reflectance with a spatial resolution of 10 km or better with multiple measurements in permanently shadowed and occasionally Sunlit regions poleward of 80° S latitude.

### Flight System:

• **Size**: 6 U, <14 kg

• Telecom: Iris v2.1

• Propulsion: LMP-103S/LT "green"

monoprop, 100mN x4

• Payload: 4-band reflectometer

### Measurement Approach:

- Lasers in 4 different bands illuminate the lunar surface permanently shadowed craters.
- Light reflected off the lunar surface enters the reflectometer to distinguish water ice from regolith.

#### Lifetime.

Ride: SLS EM1

Launch: Late 2020

Orbit Insertion: Launch +6 mo Science Ops: 2 mo on orbit

#### Orbit:

• Elliptic: 15 km perilune

Period: ~7 days

• Perilune: South Pole

• Sci Pass: ~6 min

### Teaming:

- JPL (Lead)-MSFC (Propulsion)-GSFC (PI)
- APL (Co-I), UC Boulder (Co-I), UCLA (Co-I, data processing)



## **Concept of Operations**



- Deployment from SLS at Bus Stop #1
   Low-energy transfer to polar lunar orbit insertion point
  - required for Science OrbitTCM-1 avoids escape
  - 3 distant lunar flybys to achieve polar orbit with required sun geometry at moon
  - 3 distant Earth flybys: 40K, 35K, 90K km
- ♦ Time of Flight: 190 days



Non-perilune Orbit Activities: communication passes,

maintenance maneuvers, battery

recharging, momentum management as needed





## **Flight System Overview**



| Lunar Flashlight              |                                                                                                                                                                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Payload                       | <ul><li>4-band Laser Projector</li><li>Lunar Reflectometer Receiver</li></ul>                                                                                             |
| Mechanical<br>& Structure     | 6U CubeSat form factor     ≤14 kg total launch mass                                                                                                                       |
| Propulsion                    | <ul> <li>~250 m/s of delta-v capability</li> <li>4x100 mN thrusters</li> <li>Utilizes LMP-103S/LT "green" monopropellant</li> </ul>                                       |
| Avionics                      | Hybrid architecture of COTS and radiation tolerant components                                                                                                             |
| Electrical<br>Power<br>System | <ul> <li>Flat-panel and tri-fold deployable solar arrays with UTJ GaAs cells</li> <li>18650 Li-ion battery cells</li> <li>9 -12.3 V unregulated, 5 V regulated</li> </ul> |
| Telecom                       | <ul> <li>JPL Iris 2.1 X-Band<br/>Transponder; supports doppler,<br/>ranging, and D-DOR</li> <li>INSPIRE-heritage low gain<br/>antennas (RX/TX)</li> </ul>                 |
| Attitude<br>Control<br>System | <ul> <li>50 mNm-s (x3) RWAs</li> <li>Nano StarTracker, Coarse Sun<br/>Sensors &amp; MEMS IMU for<br/>attitude determination</li> </ul>                                    |





# Technology Demonstration – Payload (1) Description



- Occupies ~2U in a 6U flight system
- Optical receiver and laser emitter are supported on a very precise and stiff mechanical plate to facilitate alignment
- Receiver consists of a 70 mm off-axis parabolic mirror and a baffle assembly to shield the InGaAs detector from stray light
- Detector is cooled by an aluminum radiator mounted on the receiver body which radiates to deep space.
- Lasers are mounted on a phase change material box for thermal dissipation; laser power boards are also mounted to this structure.
- Three Li-ion 18650 battery cells, separate from the spacecraft battery cells, provide power for the lasers.





# Technology Demonstration – Payload (2) Payload Operations Concept







# Technology Demonstration – Propulsion (1) Micro-propulsion Subsystem



#### **Self Contained Propulsion System:**

- 4X 100mN thrusters, Canted 12°
- · Provides Pitch, Yaw, Roll, & Delta-V
- All-Welded Titanium Alloy Construction
- Integrated Controller Electronics
- RS-422 Data bus Interface
- Minimum i-bit: ~5mN-sec

#### Range Safety Features:

- LMP-103S/LT, a "green" monoprop
- · Dual-Fault Protection from Leakage
- · Separate 5V & 12V Inputs
  - · 5V for digital electronics
  - · 12V for valves & heaters





### Technology Demonstration – Propulsion (2) LMP-2013S Propellant Basics



- LMP-103S was developed in 2004 by ECAPS, at the time a subsidiary of the Swedish Space Corporation (SSC), as a high performing, reduced-toxicity monopropellant for spacecraft applications.
- LMP-103S is a storable liquid monopropellant blend based on Ammonium Dinitramide (ADN) blended with water, ammonia, and methanol.
  - Essentially a pre-mixed bipropellant, it is a highly energetic substance.
- Completed 5+ years of on-orbit demonstration aboard the PRISMA satellite, launched by the SSC in June 2010 out of Baikonur.





## **Summary and Project Status**



### Lunar Flashlight is:

- Demonstrating new technologies and addressing a strategic knowledge gap in a 6U CubeSat form factor
  - "Green" propulsion subsystem with 100 mN thrusters to insert into lunar orbit
  - Laser reflectometer payload to measure and map %wt. of water ice
- Advancing the next-generation of flight-proven technology
  - Iris v2.1 radio
  - Sphinx processor
- A collaboration between several NASA centers and other institutions
  - Plus, custom, COTS, and in-house procurements
- Finished with a successful RF compatibility test between our flight radio and the DSN
  - Included a successful end-to-end uplink and downlink test between our flight radio, the DSN, and the planned ground operations software
- Accepting final hardware deliveries in preparation for system integration and test

